Log in
  • 16 Apr 2021 4:45 AM | Anonymous member (Administrator)

    Author: Ali Khayrallah has been working away at the G’s of mobile for many years. He leads a research team shaping the future of mobile technology at Ericsson in Santa Clara. He is currently focused on 6G efforts in the US with industry, academia and government.

    [Disclaimer: The below article is the author's personal opinion]

    Just as the main operators in North America are completing the first wave of 5G network rollouts and 5G phones are becoming mainstream, we are starting to hear about 6G (or Next G, or whatever name sticks eventually). 

    Why so soon and what will it do for us? This article will try to give you a glimpse of some answers.

    The long game

    History doesn’t quite repeat itself but it kind of rhymes. Each ‘G’ (for generation) of mobile from 2G to 4G has lasted about 10 years, and it seems 5G will too. So we can guess that the 6G era will start around 2030. What is less obvious to the general public is that the buildup also takes a decade, so the time to start working on 6G is now. As you will come to appreciate, this is truly a long game from early research to commercial deployment on a global scale. Each new G offers an opportunity for radical changes, unconstrained by necessary compatibility within a single generation. To get there, we need time: to do the research and mature the technologies that potentially drive changes; to integrate them into complex systems and figure out ways to exploit their potential; to reduce them to practice and understand their feasibility; to create standards that incorporate them; to design products and services based on those standards; and finally to deploy networks.

    I will first talk about what 6G is about then discuss how to get there, in particular standards and spectrum, as well as geopolitical factors that may help or hinder us.


    Photo credit

    6G: use case and benefits

    It is of course difficult today to pin down the technologies that will enable 6G networks or the use cases that will drive the need for them, but we can paint a big picture of where we might be headed. 

    We expect the trend towards better performance in customary metrics such as capacity, bit rate, latency, coverage and energy efficiency to continue, as it has in previous G’s. To that end, we foresee further improvements in workhorse technologies such as multi-antenna transmission and reception, in particular more coordination of transmissions across sites. Also, the insatiable appetite for more spectrum will continue to lead us to ever higher frequencies, into the low 100’s of GHz. The need for ubiquitous coverage will push for integration of non-terrestrial nodes such as drones and low earth orbiting satellites into terrestrial networks. The success of these various directions hinges on solving a wide array of tough technical problems.

    Networks will also need to evolve in other ways, such as trustworthiness, which entails the network’s ability to withstand attacks and recover from them. One aspect is confidentiality, which goes beyond protection of data during transmission to secure computation and storage. Another aspect is service availability, which requires resilience to node failure and automated recovery.

    We can also think of use cases that will create the demand for 6G. One use case is the internet of senses, where we expect the trend from smartphones to AR/VR devices and beyond that involve most of our senses, leading to a merge of the physical and virtual worlds and putting very tough latency and bit rate requirements on the network. Another use case is very simple and possibly battery-less devices such as sensors and actuators for home automation, asset tracking, traffic control etc. Such devices must be accommodated by the network with appropriate protocols. Yet another is intelligent machines, where the network provides specialized connectivity among AI nodes, allowing them to cooperate. Speaking of AI, it is also expected to increasingly pervade the operation of the network itself, moving down from high level control closer to signal processing at the physical layer.

    Setting up standards: why do we need them?

    It sounds so 20th century but there are very good reasons, the main one being mobility. In mobile communications we need well defined interfaces so network elements speak and understand the same language. Phones move around and they have to be able to connect to different networks. Within a network, components from different vendors have to work together. Standards define the interfaces to make it all work together, and they do much more, including setting the minimum performance requirements for phones and base stations. In practice, companies spend a lot of money and effort on interoperability testing to ensure their equipment plays well with others.

    Three main ingredients to 6G success (or failure)

    3GPP

    In the mobile industry, the main standards body is 3GPP, which issues releases about every 18 months. A release fully defines a set of specifications that can be used to develop products. For example, Release 15 (2018) provided the first specifications for 5G, primarily covering the signaling and data channels to support improved mobile broadband. One particularly useful feature is the so-called flexible numerology, which enables the same structure to be adapted for use over a wide range of frequency bands. Release 16 (2020) added several features, including unlicensed spectrum operation and industrial IoT. Release 17 currently under construction will include operation at higher frequencies, more IoT features and satellite networks. From where we stand today, we expect the first release with 6G specifications to be around 2028.

    3GPP standards enable mobile networks to flourish globally, making it possible to recoup the enormous R&D investments. Since the advent of 4G, there has been a single effective standard worldwide. Earlier, there were two dominant factions developing the CDMA and GSM families of standards. This split probably led to the failure of several large companies. In our industry, fragmentation is the F-word. I will revisit this in the context of current geopolitics.

    Spectrum

    Until recently, all mobile spectrum was in the low band (below 3 GHz), which has become jam-packed not only with mobile but many other services. The psychedelic colored spectrum map gives you a feel for it. With 5G, the floodgates have opened, with new spectrum becoming available in mid band (roughly 3 to 7 GHz) and high band (24 to 52 GHz). These higher bands are great because it’s possible to operate with wider bandwidths (in 100’s of MHz compared to 10-20 MHz in low band) and support higher rate services. But propagation characteristics in higher bands make for challenging deployment, as signals don’t travel well through walls etc. Moving into even higher bands in the 100’s of GHz will exacerbate this problem. Also, spectrum used by legacy systems will get gradually re-farmed for use by new networks. In addition, there is a push led by the FCC (Federal Communications Commission) to mandate spectrum sharing between networks and incumbent users such as radar as a way to accelerate spectrum availability. The CBRS band at 3.55 GHz is the leading example of this type of policy. Keep in mind that spectrum is our lifeline and we’ll take it and make the best of it wherever and however it’s available.

    Geopolitics

    The “trade is good” principle that has dominated government policies since the fall of the Soviet Union seems to be on its way out, being replaced by more nationally centered policies. In this context there is now keen awareness of the rise of China as a serious technological rival to the US and its allies. This has manifested itself to a full extent in telecom with all the recent attention on 5G and mobile networks as a strategic national asset.

    There is wide support in congress for big spending on technology R&D, including 6G, evidenced by several proposals under discussion around the National Science Foundation (NSF) alone. Their common thread is a multifold budget expansion and an increased emphasis on technology transfer. 

    In the private sector, the Alliance for Telecommunications Industry Solutions (ATIS) which represents the interests of the telecom industry in North America has launched the Next G Alliance to develop a roadmap towards 6G and lobby the government to influence policy and secure funding for R&D.

    This is all good on the national scale, but it may come back to bite us with standards fragmentation and the threat of losing the global market scale. Navigating this complicated landscape will be challenging and it will be fascinating to me to see how it all plays out over the coming years.

    Additional Resources:

  • 25 Nov 2020 6:45 AM | Anonymous

    This is the first part of a series on Executive Coaching and Leadership Development for professionals.

    Executive coaching has exploded in popularity in the last decade and today benefits from an army of passionate advocates that not only including the coaches but also the participants that have personally benefited from coaching and their organizational sponsors who witnessed its transformational power firsthand.

    Between 25 and 40 percent of Fortune 500 companies use executive coaches, according to the Hay Group (acquired by Korn-Ferry), a major human-resources consultancy. Lee, Hecht, Harrison, the world’s leading career management firm, derives a full 20 percent of its revenues from executive coaching. Manchester, Inc., a similar national firm, finds that about six out of ten organizations currently offer coaching or other developmental counseling to their managers and executives. Another 20 percent of companies plan to offer coaching within the next year. Today, Cisco, Google, Uber, Facebook, among others have created departments of internal coaching and hired some of the brightest executive coaching minds.

    There are many definitions of executive coaching, but two of the most straightforward definitions that we prefer to use are, “a relationship in which a client engages with a coach in order to facilitate his or her becoming a more effective leader” (Ely et. Al) and “the facilitation of learning and development with the purpose of enhancing effective action, goals achievement, and personal satisfaction.”

    While these definitions provide a broad description of its intended purpose, the following criteria are used to more strictly define executive coaching:

    1. One-on-one interaction between an executive coach and the client – as opposed to team coaching, team building, group training, or group consulting. Coaches and clients usually interact through live sessions, weekly or bi-weekly for 60 to 90 minutes.
    2. Methodology based – drawing on specific tools, methods, and techniques that promote the client’s agenda to uncover their own blind spots, identify their challenges, and develop their own goals.
    3. Structured conversations led by a trained professional – as opposed to more traditional mentorship that takes place between managers, HR professionals, and peers These conversations focus on identifying and strengthening the relationship between the client’s own development and requirements of the business. As the complexity of the business increases, and the expectations on leaders increase, they found themselves needing to develop new skills and behaviors while eliminating self-inhibitors.
    4. Task-oriented – Executive coaching involves important stakeholders beyond the client and the coach; the goals and future outcomes for organization are central to the process. By using a sequence of explorations and small goal-achievements, the coach helps the client take action constantly in small increments to create long-lasting behavioral changes and results for both the client and the organization.
    5. Long-term Impact – intended to enhance the person’s ability to learn and develop new skills independently. The model focuses on developing the client’s capacity, knowledge, motivation, insights, and emotional intelligence maturity in order to effect long-term benefits.
    There are also many areas of expertise in which executive coaches can support clients:
    1. Business Acumen – focus on a deep understanding of best business practices and strategies, management principles and behaviors, financial models, business models and plans, and startup life cycles. While business consultants are hired to provide business relevant answers, executive coaches with business acumen guide the clients to define their own challenges, and develop their own solutions that align with their career and organizational goals.
    2. Organizational Knowledge – focus on design, structure, power and authority, alignment, culture, leadership models, company goals achievement and leadership development. Complexities of organizational models are very invisible to the untrained eye, or for coaches with no prior relevant personal experience.
    3. Coaching knowledge – focus on coaching methodologies, competencies, practices, assessment, personal goals achievement, as well as being students of lifelong learning and behavioral improvement. While there are many leaders providing coaching to their peers and teams, the work of professional executive coaches within organizations involves unleashing the human spirit and expanding people’s capacity to stretch and grow beyond self-limiting boundaries.
    “Executive coaches are not for the meek. They’re for people who value unambiguous feedback. If coaches have one thing in common, it’s that they are ruthlessly results-oriented. ”, according to an article according to Fast Company Magazine. This quote defines the major boundary between executive coaching and the unstructured other areas such as advising, consulting, or peer mentoring.

    In the next part of this series, we will explore the challenges and learnings on how to become a rock-star leader.

    Main image via Pexels.

    As an Executive Coach, Elie Habib guides CEOs, entrepreneurs, and senior executives toward performance excellence and acceleration of their career aspirations.

    He serves as a thought partner in guiding leaders to address their most complex leadership challenges.

    Elie is CEO of MotivaimCoach, Lebnet co-founder, Investment Committee member of MEVP’s Impact Fund (Lebanon), and prior corporate executive and CEO/founder.

  • 25 Nov 2020 6:41 AM | Anonymous

    This article is part of an expert series written by industry experts. In this part, Nadim Maluf, the CEO of Qnovo Inc, discussed the impact of the electrical grid and lithium-ion batteries breakthrough.

    The Royal Swedish Academy of Sciences awarded on 9 October 2019 the Nobel Prize in Chemistry to three scientists for “the development of the lithium-ion battery.” It was a long overdue recognition for John Goodenough, Stanley Wittingham and Akira Yoshino, and for the thousands of engineers and scientists who have made rechargeable batteries a pillar of a mobile society.

    Any person around the globe can associate lithium-ion batteries as the main power source in their smartphones or laptop computers, and increasingly, in new generations of electric vehicles. If you drive one, like a Tesla, you are quite fluent about its capabilities and limitations. Yet, few recognize how central lithium-ion batteries have become to our global economies — and the extent to which the “green revolution” relies on energy storage and battery systems. The purpose of this article is to shed some light on the underlying technologies and applications, both present and future.

    In many respects, a lithium-ion battery is a simple device. It has two electrical terminals: positive and negative. Yet, in many other respects, it is complex or evokes a sense of complexity because it involves “chemistry,” a topic of inimical memories to many college graduates.

    The basic structure of a Lithium-Ion battery

    In its most basic form, a lithium-ion battery consists of three sandwiched layers rolled together inside a package: an anode, a cathode, and a porous separator in between. During charging, lithium ions travel from the cathode to the anode through the pores of the separator. The opposite occurs during discharging.

    The battery inside your smartphone looks very much like the one described above. The battery inside an electric vehicle consists of hundreds — or in some cases thousands — of individual batteries (called cells) electrically connected together to provide more electrical charge and energy.

    Stored energy determines the life of the battery, i.e., the duration of time the energy may be available to a user. The basic unit of energy is the watt-hour, or W.h. The energy capacity of a small smartphone battery is about 15 W.h., sufficient to power a device for a day. That of an electric vehicle is nearly 100,000 W.h, often written as 100 kWh. This amount is sufficient for a driving range of approximately 500 km – or 5 hours at highway speeds. Batteries intended for the electric grid store a far larger amount of energy, typically several million W.h, or MW.h.

    The number of times the battery can be charged and discharged is called “cycle life.” In principle, charge-discharge cycling should occur indefinitely but degradation of structural materials within the battery limit its lifespan to less than 1,000 cycles. That works well for most applications.

    Charge time is another measure of importance, especially for consumer devices and electric vehicles.

    As the ancient saying goes, there is no such thing as a free lunch. Stored energy, cycle life and charge time are all inter-related. For example, repeated fast charging may accelerate battery damage hence shortening its lifespan (or cycle life). Such complex interactions force manufacturers to optimize the design of the battery to its intended application.

    The success of lithium-ion batteries in modern times is largely due to their favorable economics. The cost of batteries plummeted in this decade from US $1,000 US per kWh to nearly $100 per kWh. Forecasters predict that electric vehicles will reach cost parity with traditional combustion-engine cars by 2024. Combined with government regulations on greenhouse gas (GHG) emissions, it is inexorably transforming the automotive and transportation industries.

    Beyond consumer devices and electric vehicles, electric utilities are exploring the use of large-scale lithium-ion batteries for their grids. Many are familiar with pairing batteries to residential solar panel installations for the purpose of going off-grid. The reality is that such an application is limited in appeal to affluent suburban or rural areas; dense urban geographies will remain dependent for the foreseeable future on electric utility companies.

    Several utilities around the globe are piloting the use of lithium-ion batteries to offset a timing imbalance, dubbed the “duck curve,” between electric power demand and renewable energy production. Solar power peaks in the afternoon hours causing traditional fossil fuel power plants, namely gas-powered turbines, to throttle down their production. Yet these turbines need to ramp up rapidly again in the evening to make up for rising power demand after the sun sets. This steep decline in traditional power generation in the afternoon followed by a rapid ramp in the evening causes significant stress on the grid and worse greenhouse gas emissions.

    Enter lithium-ion batteries. They soak up the excess solar energy generated during daylight and then deliver it after the sun goes down. The result is a flatter power generation profile for traditional fossil fuel power plants with improved operating efficiencies, lower GHG emissions and better economics.

    The California Energy Commission approved in 2018 a mandate to install solar panels on all new single-family homes constructed after 2020. Guaranteeing a steady rise in future use of solar energy, batteries become a critical component in integrating renewable sources of energy with the traditional grid.

    Duck Curve: Timing imbalance between peak demand and renewable energy production in California.
    (Source: California Independent System Operator CAL ISO)

    Traditional grids historically consisted of large power production plants in distant locations and extensive transmission grid lines to transport the power to large urban areas.

    Power plants adjusted their energy outputs to match the exact demand at that moment in time. Future grids will evolve to more distributed designs integrating renewable energy sources (e.g., solar, wind) in proximity to or within urban boundaries, with energy storage systems (to store energy when it is generated and releasing it when it is needed).

    California leads the nation in energy storage with 4,200 MW of installed capacity — enough to power nearly 1 million households. California Senate Bill SB100 mandates that the state receives all its energy from carbon-neutral sources by 2045. Both the state legislature and the California Public Utilities Commission (CPUC) have imposed specific energy storage targets for investor-owned utilities operating across the state.

    Looking out to the next decade, energy storage and batteries will become central to global energy and transportation policies. It is no surprise that forecasters estimate the market for lithium-ion batteries to be in excess of $300 Billion by 2030.

    Main Image via Pexels


LebNet, a non-profit organization, serves as a multi-faceted platform for Lebanese professionals residing in the US and Canada, entrepreneurs, investors, business partners in a broad technology eco-system, and acts as a bridge to their counterparts in Lebanon and the rest of the Middle East

© 2020-2012 LEBNET. ALL RIGHTS RESERVED

205 De Anza Blvd., #315, San Mateo, CA 94402, USA. +1.650.539.3536

Powered by Wild Apricot Membership Software